Two MIT PhD students awarded J-WAFS fellowships for their research on water
Since 2014, the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) has advanced interdisciplinary research aimed at solving the world's most pressing water and food security challenges to meet human needs. In 2017, J-WAFS established the Rasikbhai L. Meswani Water Solutions Fellowship and the J-WAFS Graduate Student Fellowship. These fellowships provide support to outstanding MIT graduate students who are pursuing research that has the potential to improve water and food systems around the world.
Recently, J-WAFS awarded the 2024-25 fellowships to Jonathan Bessette and Akash Ball, two MIT PhD students dedicated to addressing water scarcity by enhancing desalination and purification processes. This work is of important relevance since the world's freshwater supply has been steadily depleting due to the effects of climate change. In fact, one-third of the global population lacks access to safe drinking water. Bessette and Ball are focused on designing innovative solutions to enhance the resilience and sustainability of global water systems. To support their endeavors, J-WAFS will provide each recipient with funding for one academic semester for continued research and related activities.
“This year, we received many strong fellowship applications,” says J-WAFS executive director Renee J. Robins. “Bessette and Ball both stood out, even in a very competitive pool of candidates. The award of the J-WAFS fellowships to these two students underscores our confidence in their potential to bring transformative solutions to global water challenges.”
2024-25 Rasikbhai L. Meswani Fellowship for Water Solutions
The Rasikbhai L. Meswani Fellowship for Water Solutions is a doctoral fellowship for students pursuing research related to water and water supply at MIT. The fellowship is made possible by Elina and Nikhil Meswani and family.
Jonathan Bessette is a doctoral student in the Global Engineering and Research (GEAR) Center within the Department of Mechanical Engineering at MIT, advised by Professor Amos Winter. His research is focused on water treatment systems for the developing world, mainly desalination, or the process in which salts are removed from water. Currently, Bessette is working on designing and constructing a low-cost, deployable, community-scale desalination system for humanitarian crises.
In arid and semi-arid regions, groundwater often serves as the sole water source, despite its common salinity issues. Many remote and developing areas lack reliable centralized power and water systems, making brackish groundwater desalination a vital, sustainable solution for global water scarcity.
“An overlooked need for desalination is inland groundwater aquifers, rather than in coastal areas,” says Bessette. “This is because much of the population lives far enough from a coast that seawater desalination could never reach them. My work involves designing low-cost, sustainable, renewable-powered desalination technologies for highly constrained situations, such as drinking water for remote communities,” he adds.
To achieve this goal, Bessette developed a batteryless, renewable electrodialysis desalination system. The technology is energy-efficient, conserves water, and is particularly suited for challenging environments, as it is decentralized and sustainable. The system offers significant advantages over the conventional reverse osmosis method, especially in terms of reduced energy consumption for treating brackish water. Highlighting Bessette’s capacity for engineering insight, his advisor noted the “simple and elegant solution” that Bessette and a staff engineer, Shane Pratt, devised that negated the need for the system to have large batteries. Bessette is now focusing on simplifying the system’s architecture to make it more reliable and cost-effective for deployment in remote areas.
Growing up in upstate New York, Bessette completed a bachelor's degree at the State University of New York at Buffalo. As an undergrad, he taught middle and high school students in low-income areas of Buffalo about engineering and sustainability. However, he cited his junior-year travel to India and his experience there measuring water contaminants in rural sites as cementing his dedication to a career addressing food, water, and sanitation challenges. In addition to his doctoral research, his commitment to these goals is further evidenced by another project he is pursuing, funded by a J-WAFS India grant, that uses low-cost, remote sensors to better understand water fetching practices. Bessette is conducting this work with fellow MIT student Gokul Sampath in order to help families in rural India gain access to safe drinking water.
2024-25 J-WAFS Graduate Student Fellowship for Water and Food Solutions
The J-WAFS Graduate Student Fellowship is supported by the J-WAFS Research Affiliate Program, which offers companies the opportunity to engage with MIT on water and food research. Current fellowship support was provided by two J-WAFS Research Affiliates: Xylem, a leading U.S.-based provider of water treatment and infrastructure solutions, and GoAigua, a Spanish company at the forefront of digital transformation in the water industry through innovative solutions.
Akash Ball is a doctoral candidate in the Department of Chemical Engineering, advised by Professor Heather Kulik. His research focuses on the computational discovery of novel functional materials for energy-efficient ion separation membranes with high selectivity. Advanced membranes like these are increasingly needed for applications such as water desalination, battery recycling, and removal of heavy metals from industrial wastewater.
“Climate change, water pollution, and scarce freshwater reserves cause severe water distress for about 4 billion people annually, with 2 billion in India and China’s semiarid regions,” Ball notes. “One potential solution to this global water predicament is the desalination of seawater, since seawater accounts for 97 percent of all water on Earth.”
Although several commercial reverse osmosis membranes are currently available, these membranes suffer several problems, like slow water permeation, permeability-selectivity trade-off, and high fabrication costs. Metal-organic frameworks (MOFs) are porous crystalline materials that are promising candidates for highly selective ion separation with fast water transport due to high surface area, the presence of different pore windows, and the tunability of chemical functionality.
In the Kulik lab, Ball is developing a systematic understanding of how MOF chemistry and pore geometry affect water transport and ion rejection rates. By the end of his PhD, Ball plans to identify existing, best-performing MOFs with unparalleled water uptake using machine learning models, propose novel hypothetical MOFs tailored to specific ion separations from water, and discover experimental design rules that enable the synthesis of next-generation membranes.
Ball’s advisor praised the creativity he brings to his research, and his leadership skills that benefit her whole lab. Before coming to MIT, Ball obtained a master’s degree in chemical engineering from the Indian Institute of Technology (IIT) Bombay and a bachelor’s degree in chemical engineering from Jadavpur University in India. During a research internship at IIT Bombay in 2018, he worked on developing a technology for in situ arsenic detection in water. Like Bessette, he noted the impact of this prior research experience on his interest in global water challenges, along with his personal experience growing up in an area in India where access to safe drinking water was not guaranteed.